Minggu, 26 April 2020

Menentukan Volume Prisma

Mantan KA UPTD
Prisma adalah bangun ruang tiga dimensi yang dibatasi oleh alas dan tutup identik berbentuk segi-n dan sisi-sisi tegak berbentuk persegi atau persegi panjang. Dengan kata lain prisma adalah bangun ruang yang mempunyai penampang melintang yang selalu sama dalam bentuk dan ukuran.

Berdasarkan pengertian tersebut, maka prisma mempunyai bentuk yang sangat beragam diantranya adalah; Prisma segitiga, Prisma segi empat seperti kubus atau blok, namun kubus dan balok tidak masuk dalam pembahasan prisma, Prisma segi lima, Prisma segi enam, dan seterusnya. Dalam pembahasan kali ini hanya membatasi pembahasan pada beberapa prisma saja.

Ayo Kita Menalar
Diketahui volume prisma tegak segitiga siku-siku adalah 64 cm³. Bagaimana cara menemukan ukuran alas dan tinggi prisma tersebut? Berapa banyak kemungkinan ukuran-ukuran yang kalian temukan?
Volume = Luas alas x tinggi
64 = Luas alas x tinggi
Luas alas = Volume : tinggi
Tinggi = Volume : Luas alas
Luas AlasTinggiVolume
1/2 x 4 x 4 = 881/2 x 4 x 4 x 8 =64 cm³
1/2 x 8 x 2 = 881/2 x 8 x 2 x 8 = 64 cm³
1/2 x 4 x 2 = 4161/2 x 4 x 2 x 16 = 64 cm³
1/2 x 8 x 1 = 4161/2 x 8 x 1 x 16 =64 cm³
1/2 x 2 x 2 = 2321/2 x 2 x 2 x 32 = 64 cm³
1/2 x 4 x 1 = 2321/2 x 4 x 1 x 32 = 64 cm³
1/2 x 2 x 1 = 1641/2 x 2 x 1 x 64 = 64 cm³

Ayo Kita Selidiki
Ada dua prisma segitiga siku-siku, yaitu prisma A dan prisma B. Tinggi kedua prisma sama. Jika panjang sisi siku-siku terpendek prisma A sama dengan tiga kali panjang sisi siku-siku
terpendek prisma B, dan sisi siku-siku yang lain sama panjang maka tentukan perbandingan
volume prisma A dan prisma B.
1/2 x 2 x 3 x 5 = 15 cm³
1/2 x 6 x 3 x 5 = 45 cm³
Perbandingan volume A dan B adalah 1 : 3

Sebuah tenda pramuka berbentuk prisma tegak segitiga. Panjang tenda 4 m, sedangkan lebarnya 2,5 m. Jika volume tenda 10 m3, maka tentukan tinggi tenda tersebut.
Volume = Luas alas x tinggi
10 = 1/2 × 2,5 × tinggi alas × 4
10 = 2,5 × 2 × tinggi alas
tinggi alas = 10/5
tinggi alas = 2m

Soal Latihan
1. Hitunglah volume air dalam kolam renang yang panjangnya 30 m, lebarnya 10 m, kedalaman
air pada ujung dangkal 3 m terus melandai hingga pada ujung dalam 5 m.
Prisma adalah bangun ruang tiga dimensi yang dibatasi oleh alas dan tutup identik berbentu Menentukan  Volume Prisma
V = Luas alas x t
3 + 5x 30 x 10 = 4 x 30 x 10 = 1.200 m³
2

2. Alas sebuah prisma berbentuk segitiga siku-siku dengan panjang 12 cm, 16 cm dan 20 cm.
Jika tinggi prisma 30 cm, hitunglah volume prisma tersebut!
Prisma adalah bangun ruang tiga dimensi yang dibatasi oleh alas dan tutup identik berbentu Menentukan  Volume Prisma
V = Luas alas × tinggi
= (1/2 ×12 ×16)×30
= 96 × 30
= 2.880 cm³

3. Suatu prisma tegak yang alasnya merupaka segitiga dengan panjang sisi-sisinya 3 cm, 4 cm,
dan 5 cm. Jika panjang rusuk tegaknya 6 cm, maka berapakah volume prisma tersebut?
Prisma adalah bangun ruang tiga dimensi yang dibatasi oleh alas dan tutup identik berbentu Menentukan  Volume Prisma
Volume = Luas alas x tinggi
= 1/2 x 4 x 4 x 6
= 6 x 6
= 36 cm³

4. Sebuah prisma dengan alas berbentuk belah ketupat mempunyai keliling 52 cm dan panjang
salah satu diagonal alasnya 10 cm. Jika luas selubung prisma 1.040 cm², maka volume prisma
tersebut adalah…
Prisma adalah bangun ruang tiga dimensi yang dibatasi oleh alas dan tutup identik berbentu Menentukan  Volume Prisma
Keliling = 52 cm
4s = K
4s = 52
s = 52/4
s = 13 cm

Luas selubung = 1.040 cm²
Ka x t = Ls
52 x t = 1.040
t = 1.040/52
t = 20 cm

d1 = 10 cm, 1/2 d1 =5 cm (r2)
r2 = √ 13² - 5²
r2 = √144
r2 = 12 cm, d2 = 24 cm

Volume prisma = La x tinggi
= 1/2 x d1 x d2 x t
= 1/2 x 10 x 24 x 20
= 2.400 cm³

5. Sebuah kaleng berbentuk balok berukuran 10 dm × 8 dm × 6 dm berisi air penuh. Bila air itu dituangkan pada kaleng lain berbentuk prisma yang luas alasnya 96 dm² dan tingginya 9 dm. Berapa dm tinggi air pada kaleng berbentuk prisma? Volume prisma = Luas alas x tinggi
= 96 x 9
= 864 dm³

Volume balok = p x l x t
= 10 x 8 x 6
= 480 dm³

864 - 480 = 384
Luas alas x tinggi = volume
96 t = 384
t = 384/96
t = 4 dm

6. Volume sebuah prisma 540 ³. Bila alas prisma berbentuk segitiga dengan panjang rusuk masing-masing 5 dm, 12 dm, dan 13 dm, maka tentukan luas permukaan prisma tersebut.
Volume prisma=Luas alas x tinggi prisma
540 = 1/2 × 5 × 12 × t
t = 540 : 30
=18 dm
Luas permukaan prisma = 2×Luas alas + Keliling alas × tinggi prisma
=2×30 + 5+12+13×18
=60 + 540
=600 dm²

7. Kalian ditugaskan untuk prisma yang volumenya 120 cm³. Ada berapa rancangan yang dapat
kalian buat? Berapa ukuran prisma yang kalian buat? Sebutkan.
Jika Prisma Segiempat
Panjang AlasLebar AlasTinggiVolume
34103 x 4 x 10 =120 cm³
26102 x 6 x 10 = 120 cm³
25122 x 5 x 12 = 120 cm³
23152 x 3 x 15 = 120 cm³
22302 x 2 x 30 = 120 cm³
13401 x 3 x 40 = 120 cm³
12601 x 2 x 60 = 120 cm³
Jika Prisma Segitiga
Luas AlasTinggiVolume
1/2 x 4 x 6 = 12101/2 x 4 x 6 x 10 =120 cm³
1/2 x 8 x 3 = 12101/2 x 8 x 3 x 10 = 120 cm³
1/2 x 12 x 2 = 12101/2 x 12 x 2 x 10 = 120 cm³
1/2 x 4 x 5 = 10121/2 x 4 x 5 x 12 =120 cm³
1/2 x 10 x 2 = 10121/2 x 10 x 2 x 12 = 120 cm³
1/2 x 2 x 8 = 8151/2 x 2 x 8 x 15 = 120 cm³
1/2 x 4 x 4 = 8151/2 x 4 x 4 x 15 = 120 cm³

8. Alas sebuah prisma berbentuk persegi dengan panjang sisi 12 cm. Tinggi prisma adalah 15 cm. Jika sisi-sisi alasnya diperkecil 3/4 kali, tentukan perbandingan volume prisma sebelum dan sesudah diperkecil.
Volume = Luas alas x tinggi
= (12 x 12) x 15
= (144) x 15
= 2.160 cm³

3/4 x 12 = 9 cm

Volume = (9 x 9) x 15
= 81 x 15
= 1.215 cm³

Perbandingan : volume1 = volume2 2160 = 1215 = 16 ; 9